507 private links
Starlab is a joint venture between the US-based Voyager Space and the European-based multinational aerospace corporation Airbus. The venture is building a large station with a habitable volume equivalent to half the pressurized volume of the International Space Station and will launch the new station no earlier than 2028.
"SpaceX's history of success and reliability led our team to select Starship to orbit Starlab," Dylan Taylor, chairman and CEO of Voyager Space, said in a statement. "SpaceX is the unmatched leader for high-cadence launches and we are proud Starlab will be launched to orbit in a single flight by Starship." //
Starlab will have a diameter of about 26 feet (8 meters). It is perhaps not a coincidence that Starship's payload bay can accommodate vehicles up to 26 feet across in its capacious fairing. However, in an interview, Marshall Smith, the chief technology officer of Voyager Space, said the company looked at a couple of launch options.
"We looked at multiple launches to get Starlab into orbit, and eventually gravitated toward single launch options," he said. "It saves a lot of the cost of development. It saves a lot of the cost of integration. We can get it all built and checked out on the ground, and tested and launch it with payloads and other systems. One of the many lessons we learned from the International Space Station is that building and integrating in space is very expensive." //
phat_tony Ars Centurion
17y
263
Subscriptor
This is exactly what most space companies should be doing now - assuming Starship is going to work, and start planning based on the sea change that's going to create. There are still so many companies trying to duke it out in small launch where clearly the overwhelming majority of them have no chance of making it. Pivot to take advantage of the fact that everything about space launch is about to change. Figure out what we could do with a 120 ton satellite the size of a space station that we can't do now and build that satellite. Figure out what we could do with swarms of micro satellites that isn't cost effective now if they were 1/10 the cost to get to orbit. Space tugs. Commercial refueling depots. Tourism. Space stations. Solar-system wide internet as a service... NASA has a huge bandwidth problem on the Deep Space Network... even if they aren't asking for proposals, it may be a case of "if you build it, they will come."
I don't know, but when there's a two order of magnitude change pending on the most fundamental constraint of a sizable industry, that's when new players make it and old players can't adapt and break. It's like the advent of microchips, or the internet. Trying to compete with the company that's inventing the two order of magnitude improvement is the last business bet you want to make. Capitalizing on the implications is exactly what you want to do. //
pavon Ars Tribunus Militum
16y
2,100
Subscriptor
Very excited about this, finally picking up where Skylab left off. It had 350m3 pressurized volume in a single Saturn V launch, compared to the 1000m3 of ISS with 15 pressurized modules taking over a decade to assemble.
If you ever get a chance to visit Space Center Houston, you can walk through mockups of both an ISS module and Skylab, and the difference was viscerally striking to me. One was a series of hallways, like the corridors of datacenter, while the other was this spacious open area. The ISS design might be more efficient for the experiments they actually do on the ISS, and for moving about in freefall, but I can't help but imagine there were lost opportunities due to being restricted to such narrow tubes.
Sometimes, success has unforeseen consequences. The United States Space Force and Air Force (and NASA) have, in essence, decided they will simply procure space launch as a service from SpaceX. This isn’t an actual decision but is nevertheless true enough, as it has become the default situation. Cost and availability — the comparative ease of getting a launch slot — have resulted in tremendous business success for SpaceX.
An unforeseen consequence of this success is that the Space Force, the Air Force, and NASA have deprioritized rocket research and development efforts that would foster continued independent space access. Some programmatic officers would suggest there is no need for the government to continue to pursue rocket science. SpaceX is doing the required R&D, so why spend money on anything other than what’s needed for deep space? ///
Where is the basic research that NASA (or anyone on earth) was doing to make it possible for boosters to land and be reused? SpaceX are the only ones in the history of space to dare think of the concept, much less try to develop it...
Government R&D?
There were 96 flights of SpaceX's Falcon 9 and Falcon Heavy rockets, plus the first two test flights of the enormous new Starship rocket. In 2024, SpaceX said it aims for more than 140 launches of the Falcon rocket family. There may be up to 10 Starship test flights this year, according to the NASA official who manages the agency's contract with SpaceX to develop Starship into a human-rated Moon lander.
The Falcon 9 rocket that launched NASA astronauts Doug Hurley and Bob Behnken on SpaceX's first crew mission in 2020 launched and landed for the 19th and final time just before Christmas, then tipped over on its recovery ship during the trip back to Cape Canaveral, Florida.
This particular booster, known by the tail number B1058, was special among SpaceX's fleet of reusable rockets. It was the fleet leader, having tallied 19 missions over the course of more than three-and-a-half years. More importantly, it was the rocket that thundered into space on May 30, 2020, on a flight that made history on several counts.
It was the first time a commercial rocket and spacecraft launched people into orbit, and ended a nine-year gap in America's ability to send astronauts into orbit from US soil, following the retirement of the space shuttle. This mission, known as Demo-2 and launched by SpaceX under contract with NASA, ended US reliance on Russian rockets to send crews to the International Space Station. //
Hurley told Ars he would like to see the booster's remains displayed in a museum alongside the Crew Dragon spacecraft (named Endeavour) he and Behnken flew in 2020. "In a perfect world, I’d love to see Endeavour and at least now part of that booster in the Smithsonian or in a museum somewhere," he said. //
Early on December 25, the booster tipped over on the drone ship due to high winds and waves, SpaceX said. This rocket, which was built nearly five years ago, didn't have SpaceX's newest design of landing legs, which can self-level to prevent toppling at sea. //
A day later, the drone ship sailed into Port Canaveral, just south of SpaceX's launch pads, with the rocket's wreckage on the deck. The upper two-thirds of the booster, comprising its liquid oxygen tank, was missing, presumably left to sink to the bottom of the Atlantic Ocean. The remaining parts of the rocket were badly mangled, with bent landing legs and buckled engine nozzles.
Depending on how you count them, this booster launched nearly 870 satellites, mostly Starlinks, plus Hurley and Behnken on the Crew Dragon Demo-2 mission. It lofted more than 260 metric tons of payload into orbit. Its 19 flights match the number of missions SpaceX's chief US competitor, United Launch Alliance, has launched since May 30, 2020. //
"We are planning to salvage the engines and do life-leader inspections on the remaining hardware," he wrote on X. "There is still quite a bit of value in this booster. We will not let it go to waste."
1966: Atlas-Agena & Titan-Gemini ~ 1h 40m apart (4x)
This was the shortest time between orbital launches at Cape Canaveral since 1966. //
It seems like SpaceX did everything this year but launch 100 times.
On Thursday night, the launch company sent two more rockets into orbit from Florida. One was a Falcon Heavy, the world's most powerful rocket in commercial service, carrying the US military's X-37B spaceplane from a launch pad at NASA's Kennedy Space Center at 8:07 pm EST (01:07 UTC). Less than three hours later, at 11:01 pm EST (04:01 UTC), SpaceX's workhorse Falcon 9 launcher took off a few miles to the south with a payload of 23 Starlink Internet satellites.
The Falcon Heavy's two side boosters and the Falcon 9's first stage landed back on Earth for reuse. //
These were SpaceX's final launches of 2023. SpaceX ends the year with 98 flights, including 91 Falcon 9s, five Falcon Heavy rockets, and two test launches of the giant new Super Heavy-Starship rocket. These flights were spread across four launch pads in Florida, California, and Texas. //
It's important to step back and put these numbers in context. No other family of orbit-class rockets has ever flown more than 63 times in a year. SpaceX's Falcon rockets have now exceeded this number by roughly 50 percent. SpaceX's competitors in the United States, such as United Launch Alliance and Rocket Lab, managed far fewer flights in 2023. ULA had three missions, and Rocket Lab launched its small Electron booster 10 times.
Nearly two-thirds of SpaceX's missions this year were dedicated to delivering satellites to orbit for SpaceX's Starlink broadband network, a constellation that now numbers more than 5,000 spacecraft. //
As if these statistics weren't enough, SpaceX closed out the year by, yes, setting yet another record. The back to back launches Thursday night took off 2 hours and 54 minutes apart, the shortest turnaround between two SpaceX flights in the company's history. It also set a modern era record at Cape Canaveral, Florida, with the shortest span between two orbital-class launches there since 1966. The Florida spaceport was the departure point for 72 orbital-class rockets in 2023, also an unprecedented level of launch activity there.
SpaceX looks poised to set more records next year. In 2024, SpaceX aims for an average of a dozen launches per month, for a total of 144 rocket flights. The company will get out of the starting blocks early in the new year, with two Falcon 9 launches slated for January 2 and 3.
SpaceX also faulted the FCC for relying on Ookla speed tests:
For instance, the Bureau's decision arbitrarily penalized SpaceX—and only SpaceX—for not meeting RDOF speed requirements years before SpaceX had any obligation to do so. The arbitrariness of applying this unstated standard exclusively to SpaceX was only compounded by the Bureau's reliance on Ookla nationwide speed tests without any notice that it planned to use such tests and even though those nationwide averages included areas that would not be served by RDOF. Even so, Starlink likely recorded the fastest speeds of any operator in the locations eligible for RDOF funds... Starlink has also deployed its service in advance of all RDOF deployment milestones and well ahead of most, if not all, RDOF awardees.
whatthehand • 1 day ago • Edited 1 day ago
Seriously. It seems like contemporary space (more specifically spacex) fans talk about reusing rockets as if this is like reusing towels or something.
For the reasons you mention and more, reuse has got very limited use at best. And until we see a series of audited financials that dig deep down into specific areas of their business, we can't even confirm the supposedly game-changing economics of it all. Spacelaunch is about as niche of a task as there could be. It's not analogous to reusing towels or toothbrushes or cars or even airplanes. ...
...
From the layperson all the way to NASA, which itself so clearly seemed to doubt their choice even within their own initial selection statement for HLS. Even u/MrPennywhistle in his ever optimistic and infectious enthusiasm helped inadvertently spread a really bizarre belief that has since taken on a new life in popular space discourse: mainly, the strange understanding that there's somehow more to be learned by rapidly, carelessly, prematurely and DELIBERATELY destroying hugely expensive and underdeveloped test-articles. I think it was following AMOS-6 and what he meant to communicate was that having a failure prior to your main mission is a saving grace to be taken advantage of: that there's much to be learned when things go kaboom by accident. Instead it's become a thing where people literally cheer their lungs out when they see a fractional prototype of a giant and expensive craft (that Artemis is desperately banking on) fail catastrophically and tear itself into a million pieces right before their eyes because "tHeReS sO mUcH DaTa! ... //
LukeNukeEm243 • [10 hr. ago][1] • Edited 10 hr. ago
The hit to payload because of reuse isn't much of an issue because you can design the rocket to be as big as you need in order to get the payload into its desired orbit. Sure, it results in a larger, more complex rocket for the same mass of payload, however you won't have to throw the entire thing away after one mission, which will result in lower costs.
SpaceX has hit their aspirational goal of 10 reuses per booster with Falcon 9 and they are continuing beyond it. Their most used boosters have been used 17 or 18 times. They have reused 39 boosters to date, for a total combined 251 landings. Right now they have a successful landing streak of more than 116 since 2021.
This year they have launched only 4 new boosters, the other 81 launches used previously-flown boosters. Similar story for last year when they only launched 4 new boosters, while launching 56 times with reused boosters. For comparison, ULA has so far launched only 3 times this year, and 8 times last year.
SpaceX is operating on an entirely different level than the rest of the launch providers. [They are launching more mass per quarter than the rest of the world combined][2]. Is it a coincidence that they just so happen to be the only launch provider doing reuse at the moment?
As for destructive testing, it is their preferred method because it allows for changes to be made more easily and they can find unknown flaws quicker. They could spend years developing and reviewing the design of Starship so that it would likely work perfectly on the 1st time like SLS. Or they could test the design they have, see what goes wrong with it, and then make improvements to the problem areas for next time. Also these prototypes are way cheaper than an operational rocket like SLS which costs like $2.1 billion alone to launch. I mean, SpaceX is only going to get about $3 billion total from NASA for the first lunar lander and its development. That money is spread out across all the various development milestones. The fixed-price contract incentivizes SpaceX to work efficiently with both their time and money.
And the reason the SpaceX employees and fans cheer during test launches is because the prototypes are: 1- very cool to see (it's like Kerbal Space Program in real life) and 2- they show visible signs of progress. IFT1 tested the launch infrastructure, the quick disconnects were successful and the rocket made it past the tower, SuperHeavy had never flown before that. IFT2 demonstrated even more progress with the deluge system protecting the pad, all engines running nominally through to the hotstage separation, and Starship almost making it to its intended trajectory.
[1] https://www.reddit.com/r/SmarterEveryDay/comments/189vh8h/comment/kbzgf6h/
[2] https://twitter.com/BryceSpaceTech/status/1720153323393663411
For example, the argument about "too many launches" actually breaks down when you consider the payload that gets brought to the lunar surface. If it was just meant to be a cheap gag, feel free to ignore the following: The LEM weighs a little over 5 tons dry, and leaves half of its mass (2.5 tons) on the surface upon return. Maybe factor in another ton for dispensable cargo and Apollo delivers 3.5 tons of material to the lunar surface (not all of this is "useful" material, but we can ignore that for the time being). Starship HLS is designed to leave 100 tons of useful payload on the lunar surface. It would take 28 Saturn V launches to deliver that much material to the moon! And that's with fully expendable launch vehicles! Suddenly a dozen (or even 2 dozen) fully reusable Starship launches doesn't sound so bad in comparison.
I also thought the criticism about the complexity of the Lunar Gateway is somewhat missing the point. To me it seems clear that a lot of the complexity in the mission is the goal; that is, developing bleeding edge technologies that we need for future manned space travel to the moon and beyond. At some point we're going to have to maintain a station somewhere in deep space acting as a permanent hub that supports ferry/cargo craft and landing vehicles. The best place to prove out that concept is around the moon.
Starship Flight Test 2
November 18, 2023, at 7:02 a.m. — SpaceX's Starship launches on its second fully-integrated flight test from the orbital launch pad at Starbase in Texas. The rocket successfully reached stage separation under the power of 33 Raptor engines on the Super Heavy booster, with the new hot-staging separation method a success! Starship made it to space and was later terminated, while the Super Heavy booster experienced a rapid unscheduled disassembly shortly after stage separation.
Starship returned to integrated flight testing with its second launch from Starbase in Texas. While it didn’t happen in a lab or on a test stand, it was absolutely a test. What we did today will provide invaluable data to continue rapidly developing Starship.
Starship successfully lifted off under the power of all 33 Raptor engines on the Super Heavy Booster and made it through a successful stage separation. The booster experienced a rapid unscheduled disassembly after its boostback burn following the successful stage separation while Starship's 6 second stage Raptor engines fired for several minutes as the Ship climbed to an altitude of ~150 kilometers.
With a test like this, success comes from what we learn, and today’s test will help us improve Starship’s reliability as SpaceX seeks to make life multiplanetary.
video
CAPE CANAVERAL, Florida—In three-and-a-half years of service, one of SpaceX's reusable Falcon 9 boosters stands apart from the rest of the company's rocket inventory. This booster, designated with the serial number B1058, has now flown 18 times. For its maiden launch on May 30, 2020, the rocket propelled NASA astronauts Doug Hurley and Bob Behnken into the history books on SpaceX's first mission to send people into orbit.
This ended a nine-year gap in America's capability to launch astronauts into low-Earth orbit and was the first time a commercial spacecraft achieved this feat. At that time, the rocket was fresh from SpaceX's factory in Southern California, glistening white in color, with a bright red NASA "worm" logo emblazoned on the side.
Over the course of its flights to space and back, that white paint has darkened to a charcoal color. Soot from the rocket's exhaust has accumulated, bit by bit, on the 15-story-tall cylinder-shaped booster. The red NASA worm logo is now barely visible. //
With Friday night's flight, this particular booster has launched 846 satellites, most of which have been Starlinks. When you let it sink in, that's a remarkable number. It's more than the total number of satellites in OneWeb's broadband network. The launch Friday night, numbered Starlink 6-26, brought the total number of functional Starlink satellites in orbit to more than 5,000, according to a tabulation by Jonathan McDowell, an astrophysicist and expert tracker of spaceflight activity. //
SpaceX officials often emphasize that, even after 277 launches of Falcon 9 or Falcon Heavy rockets, engineers learn something with each flight. It certainly helps when you get the majority of the rocket (the booster and the payload fairing) back after each launch, allowing technicians to perform inspections and refurbishment, occasional engine swaps, upgrades, or anything that needs to be done between missions.
The goal next year is 12 launches per month, for a total of 144 Falcon rocket flights. Like this year, most of those missions will be primarily devoted to launching Starlink broadband satellites. So far in 2023, more than 60 percent of SpaceX's launches have delivered the company's own Starlink satellites into orbit. //
Here are some numbers. Last year, SpaceX launched 61 missions. In 2021, the number was 31. In the last 12 months, SpaceX has launched 88 Falcon rockets, plus one test flight of the company's much larger Starship rocket. //
With so many launches planned next year, 20 flights is probably not a stopping point. "We might go a little higher," the SpaceX official said.
Engineers have shortened the time needed to reconfigure SpaceX's busiest launch pad in Florida to less than four days. SpaceX has also improved the turnaround time at its launch pad in California. //
But the big driver is Starlink. SpaceX is rolling out the direct-to-cell capability, which it says will allow Starlink satellites to connect with normal smartphones, initially with texting coverage. That will be available to users beginning in 2024, according to SpaceX, followed by voice and data services in 2025. SpaceX says the Starlink-for-phones service "works with existing LTE phones wherever you can see the sky. No changes to hardware, firmware, or special apps are required, providing seamless access to text, voice, and data."
all the tags from https://b.plas.ml
1st-amendment 2nd-amendment 4th-amendment 5th-amendment 9/11 a8 abortion acl adhd afghanistan africa a/i air-conditioning amateur-radio amazon america american android animals anti-americanism antifa anti-semitism antiv antivirus aoip apollo apple appliances archaeology architecture archive art astronomy audio automation avatar aviation backup bash batteries belleville bible biden bill-of-rights biology bookmarks books borg bush business calibre camping capitalism cellphone censorship chemistry children china christianity church cia clinton cloud coldwar communication communist composed computers congress conservatives constitution construction cooking copyleft copyright corruption cosmology counseling creation crime cron crypto culture culture-of-death cummins data database ddt dd-wrt defense democrats depression desantis development diagrams diamonds disinformation diy dns documentation dokuwiki domains dprk drm drm-tpm drugs dvd dysautonomia earth ebay ebola ebook economics education efficiency electricity electronics elements elwa email energy engineering english environment environmentalism epa ethernet ethics europe euthanasia evolution faa facebook family fbi fcc feminism finance firewall flightsim flowers fonts français france fraud freebsd free-speech fun games gardening genealogy generation generators geography geology gifts git global-warming google gop government gpl gps graphics green-energy grounding hdd-test healthcare help history hollywood homeschool hormones hosting houses hp html humor hunting hvac hymns hyper-v imap immigration india infosec infotech insects instruments interesting internet investing ip-addressing iran iraq irs islam israel itec j6 journalism jumpcloud justice kindle kodi language ldap leadership leftist leftists legal lego lgbt liberia liberty linguistics linux literature locks make malaria malware management maps markdown marriage mars math media medical meshcentral metatek metric microbit microsoft mikrotik military minecraft minidisc missions moon morality mothers motorola movies mp3 museum music mythtv names nasa nature navigation navy network news nextcloud ntp nuclear obama ocean omega opensource organizing ortlip osmc oxygen paint palemoon paper parents passwords patents patriotism pdf petroleum pets pews photography photo-mgmt physics piano picasa plesk podcast poetry police politics pollution pornography pots prayer pregnancy presentations press printers privacy programming progressive progressives prolife psychology purchasing python quotes rabbits rabies racism radiation radio railroad reagan recipes recording recycling reference regulations religion renewables republicans resume riots rockets r-pi russia russiagate safety samba satellites sbe science sci-fi scotus secularism security servers shipping ships shooting shortwave signal sjw slavery sleep snakes socialism social-media software solar space spacex spam spf spideroak sports ssh statistics steampowered streaming supplement surveillance sync tarsnap taxes tck tds technology telephones television terrorism tesla theology thorium thumbnail thunderbird time tls tools toyota trains transformers travel trump tsa twitter typography ukraine unions united.nations unix ups usa vaccinations vangelis vehicles veracrypt video virtualbox virus vitamin vivaldi vlc voting vpn w3w war water weather web whatsapp who wifi wikipedia windows wordpress wuflu ww2 xigmanas xkcd youtube zfs