Harrison Schmitt, speaking with a NASA interviewer in 2000, said his productivity in the Apollo suit “couldn’t have been much more than 10 percent of what you would do normally here on Earth.”
“You take the human brain, the human eyes, and the human hands into space. That’s the only justification you have for having human beings in space,” Schmitt said. “It’s a massive justification, but that’s what you want to use, and all three have distinct benefits in productivity and in gathering new information and infusing data over any automated system. Unfortunately, we have discarded one of those, and that is the hands.”
Schmitt singled out the gloves as the “biggest problem” with the Apollo suits. “The gloves are balloons, and they’re made to fit,” he said. Picking something up with a firm grip requires squeezing against the pressure inside the suit. The gloves can also damage astronauts’ fingernails.
“That squeezing against that pressure causes these forearm muscles to fatigue very rapidly,” Schmitt said. “Just imagine squeezing a tennis ball continuously for eight hours or 10 hours, and that’s what you’re talking about.”
Barratt recounted a conversation in which Schmitt, now 90, said he wouldn’t have wanted to do another spacewalk after his three excursions with commander Gene Cernan on Apollo 17.
“Physically, and from a suit-maintenance standpoint, he thought that that was probably the limit, what they did,” Barratt said. “They were embedded with dust. The visors were abraded. Every time they brushed the dust off the visors, they lost visibility.”
Getting the Artemis spacesuit right is vital to the program’s success. You don’t want to travel all the way to the Moon and stop exploring because of sore fingers or an injured knee.
“If you look at what we’re spending on suits versus what we’re spending on the rocket, this is a pretty small amount,” Rubins said. “Obviously, the rocket can kill you very quickly. That needs to be done right. But the continuous improvement in the suit will get us that much more efficiency. Saving 30 minutes or an hour on the Moon, that gives you that much more science.”
“Once you have safely landed on the lunar surface, this is where you’ve got to put your money,” Barratt said.
Six decades have now passed since some of the most iconic Project Gemini spaceflights. The 60th anniversary of Gemini 4, when Ed White conducted the first US spacewalk, came in June. The next mission, Gemini 5, ended just two weeks ago, in 1965. These missions are now forgotten by most Americans, as most of the people alive during that time are now deceased.
However, during these early years of spaceflight, NASA engineers and astronauts cut their teeth on a variety of spaceflight firsts, flying a series of harrowing missions during which it seems a miracle that no one died.
Because the Gemini missions, as well as NASA's first human spaceflight program Mercury, yielded such amazing stories, I was thrilled to realize that a new book has recently been published—Gemini & Mercury Remastered—that brings them back to life in vivid color.
The book is a collection of 300 photographs from NASA's Mercury and Gemini programs during the 1960s, in which Andy Saunders has meticulously restored the images and then deeply researched their background to more fully tell the stories behind them. The end result is a beautiful and powerful reminder of just how brave America's first pioneers in space were. What follows is a lightly edited conversation with Saunders about how he developed the book and some of his favorite stories from it.
Ron Howard's 1995 love letter to NASA's Apollo program takes a few historical liberties but it still inspires awe. //
This year marks the 30th anniversary of the 1995 Oscar-winning film, Apollo 13, director Ron Howard's masterful love letter to NASA's Apollo program in general and the eponymous space mission in particular. So we're taking the opportunity to revisit this riveting homage to American science, ingenuity, and daring. //
Howard ultimately shot most of the weightless scenes aboard the KC-135 since recreating those conditions on a soundstage and with CGI would have been prohibitively expensive.
In fact, Howard didn't rely on archival mission footage at all, insisting on shooting his own footage. That meant constructing realistic spacecraft interiors—incorporating some original Apollo materials—and reproducing exactly the pressure suits worn by astronauts. (The actors, once locked in, breathed air pumped into the suits just like the original Apollo astronauts.) The Mission Control set at Universal Studios was so realistic that one NASA consultant kept looking for the elevator when he left each day, only to remember he was on a movie set. //
Is every button pressed in the right way? No. Does it bug the crap out of me every time Kevin Bacon answers Tom Hanks' "How's the alignment?" question by nonsensically saying "GDC align" and pressing the GDC align button, which is neither what Lovell was asking nor the proper procedure to get the answer Lovell was looking for? Yes. But's also pure competence porn—an amazing love letter to the space program and the 400,000 men and women who put humans on the Moon.
And like Lovell says: "It's not a miracle. We just decided to go." //
Purpleivan
For anyone wanting a more extensive Apollo 13 experience, then have a look at LunarModule5's YouTube channel.
They've created an end to end (from a few hours before launch, to a few after splashdown) series of videos. These use the entire recorded audio for the mission, both for the crew and controllers on the ground. Long periods of silence have been edited our, but enough silence/static gaps between audio, for the cuts not to feel strange. They've also included some backroom discussion recordings, to fill some of the empty sections audio.
The videos show a simulation (I don't know the software used) to visualise the events of the mission, as well as a huge collection of photos from the mission.
I've watched a few of the videos and plan at some point to watch them all (something like) end to end. However, as the set of mission videos comes in 19 parts, with many 10 hours long, for a total of about 120 hours, it's a serious commitment of time.
https://www.youtube.com/watch?v=x4gb6Eb_Mes&list=PLC1yaZz2qeGrj_-TCMeupfzRUmf6CysdF
June 29, 2025 at 7:15 pm //
postpar Ars Centurion
6y
221
Subscriptor
FWIW, and this is a throwaway here, Chrysler never really got the credit they deserved for their stellar work on those rockets, or on the electronic communication and diagnosis devices, which were quite advanced and reliable under tough circumstances. When Apollo ended, a lot of those guys went back to Detroit. Some of them worked on the racing program, doing aero and diagnostic work; others worked on electronic ignition and on-board automotive computers. They did all this for relatively small profits.
https://www.motales.com/chrysler-corp/aerospace-defense/rockets-by-chrysler.php //
Those Mission Control consoles were built by Ford (Philco division.https://www.youtube.com/watch?v=1XbEIMcxl04)
Most fittingly, the Lunar Roving Vehicle was built in part by General Motors.
And with all that fresh space-age engineering experience under their belts, the American auto industry...basically fell apart at the seams for the next decade. //
JoHBE Ars Tribunus Militum
14y
2,881
Subscriptor++
The movie is now older than the mission was at [the movie's] release.
This unusual photograph, taken during the second Apollo 12 extravehicular activity (EVA), shows two U.S. spacecraft on the surface of the moon. The Apollo 12 Lunar Module (LM) is in the background. The unmanned Surveyor 3 spacecraft is in the foreground. The Apollo 12 LM, with astronauts Charles Conrad Jr. and Alan L. Bean aboard, landed about 600 feet from Surveyor 3 in the Ocean of Storms. The television camera and several other pieces were taken from Surveyor 3 and brought back to Earth for scientific examination. Here, Conrad examines the Surveyor's TV camera prior to detaching it. Astronaut Richard F. Gordon Jr. remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the LM to explore the moon. Surveyor 3 soft-landed on the moon on April 19, 1967.
Anders - who was a lunar module pilot on the Apollo 8 mission - took the iconic Earthrise photograph, one of the most memorable and inspirational images of Earth from space.
Taken on Christmas Eve during the 1968 mission, the first crewed space flight to leave Earth and reach the Moon, the picture shows the planet rising above the horizon from the barren lunar surface.
Anders later described it as his most significant contribution to the space programme.
The image is widely credited with motivating the global environmental movement and leading to the creation of Earth Day, an annual event to promote activism and awareness of caring for the planet.
Speaking of the moment, Anders said: "We came all this way to explore the Moon, and the most important thing that we discovered was the Earth."
Simultaneity Ain't what It Used to Be
One of the most fundamental deductions Albert Einstein made from the finite speed of light in his theory of special relativity is the relativity of simultaneity—because light takes a finite time to traverse a distance in space, it is not possible to define simultaneity with respect to a universal clock shared by all observers. In fact, purely due to their locations in space, two observers may disagree about the order in which two spatially separated events occurred. It is only because the speed of light is so great compared to distances we are familiar with in everyday life that this effect seems unfamiliar to us. Note that the relativity of simultaneity can be purely due to the finite speed of light; while it is usually discussed in conjunction with special relativity and moving observers, it can be observed in situations where none of the other relativistic effects are present. The following animation demonstrates the effect. //
... by extracting transmissions from the LM from those originating in mission control onto separate tracks with the Audacity audio editor, I was then able to time-shift transmissions originating from the Earth by the light delay of 1.2865 seconds to reproduce what Buzz Aldrin and Neil Armstrong heard through their headphones in the cabin of the Eagle lunar module on the surface in Mare Tranquillitatis. During the landing phase, an on-board tape recorder in the lunar module captured the voices of Armstrong and Aldrin even when they were not transmitting on the air to ground link. From this noisy source, I have restored the few remarks by Armstrong which were only heard within the cabin. This is, then, the lunar touchdown as heard by the astronauts who performed it.
Now it's obvious what happened to Armstrong's post-landing transmission! Right before he began the call, Duke's message, sent a second and a quarter earlier, arrived at the Moon. While, from an earthly perspective, this was spoken well before Armstrong said “Houston”, on the Moon this message “stepped on” the start of Armstrong's transmission (especially considering human reaction time), and caused him to pause before continuing with his message. Note also that on the Earth-based recording, Duke's response occurs almost immediately after the end of Armstrong's transmission, but on the Moon, the astronauts had to wait for the pokey photons to make it from the home planet to their high gain antenna on its distant satellite.
This image (click on image to enlarge) shows the sequence of images that were read out during what is termed “priority” readout vs the “final readout”. The priority readout was an opportunistic scanning of processed photos on the lunar orbiter before all of the images were taken. The photo process with the 70mm film began with an image being simultaneously taken by the 610 mm high resolution camera and by the 80 mm medium resolution camera. In a process remarkably similar to the old polaroid dry process instamatic cameras, the film was dry processed by a “bimat” dry processor. The bimat would separate from the film (most of the time) but would sometimes due to the timing would leave artifacts on the image, which are readily identified on the film.
The film would then be fed into the readout looper where it could be scanned and the images sent back to the Earth. During the mission when photographs were still being taken the film would run one direction through the looper. After all of the images were taken a command would be sent to cut the bimat and then the film could be read in the opposite direction.
Thus when we start with a low numbered tape, the first images that come off are from the priority readout in ascending order. However, the ascending order is not linear, jumping because images are still being taken and the film advancing while the spacecraft cannot transmit.
At 12.56 pm on 21 July 1969 Australian Eastern Standard Time (AEST), mankind took its 'one giant leap' and 600 million people watched as Neil Armstrong walked on the Moon.
Our Parkes radio telescope, Murriyang, famously supported receiving the television signals on that momentous day. Although many people think the Parkes telescope was the only station receiving the signal, it was the 26-metre antenna at NASA's Honeysuckle Creek space tracking station near Canberra that was the prime station assigned with receiving the initial TV pictures from the Moon and Neil Armstrong's first steps on the lunar surface. (The Tidbinbillla deep space tracking station, today known as the Canberra Deep Space Communication Complex, provided support to the command module in lunar orbit.)
Eight and a half minutes after those first historic images were broadcast around the world, the television signal being received by the larger 64-metre Parkes radio telescope, Murriyang, was then selected by NASA to provide the images for the following two hours and 12 minutes of live broadcast as the Apollo 11 astronauts explored the Moon surface.
“I’ve spent the past week in Mountain View, California, hanging out with a group of Lunar Orbiter Image Recovery Project (LOIRP) hackers who are working out of an abandoned McDonald’s on the NASA Ames base. For more than five years, LOIRP technologists (or techno-archeologists, as they prefer to be called) have been reverse-engineering analog tape drives and developing new software in an attempt to unearth some of the first images of the moon that were taken by unmanned lunar orbiters in advance of the manned Apollo missions of the late 1960s. Upon entering the building (affectionately called “McMoon’s” by those who work within it) for the first time, I was greeted by familiar architecture. The drive-thru windows, menu light boxes, stainless steel counters, fiber glass tables and the ghosts of corporate brand ephemera all remain. However now they coexist under a jolly roger with a literal mountain of vintage 2-inch tape reels that contain trapped data, refrigerator-sized Ampex tape drives, an army of Mac workstations and a seemingly endless supply of analog tape decks, monitors, cables and soldering supplies.”
Vigilant migration of data as new storage techniques become available is the only way to assure long-term preservation. Even if the IRIG tapes are found, we are almost at the point where the tapes would be un-decipherable. I think one of my machines could play them (I say think as I’ve never tested it to full 500 kHz bandwidth), but I don’t have the specialized video decoder. NASA apparently preserved some equipment should the tapes ever show up.
This also raises another spectre. We MUST be selective as to what we keep in our archives because if we keep everything we won’t be able to afford it–or find it. This is one of the key jobs that archivists do. However, blindly following retention practices, as was done by NASA for the IRIG Apollo 11 tapes, needs to be tempered by historians as well. Certain small subsets of data (moonwalk slow scan video) are much more important than others (astronauts’ blood pressure and other biometrics throughout the entire flight).
All organizations who keep archives need to address this. In a generation (or less) if we save everything, it will become an overwhelming burden and the high points will be lost if they are not properly indexed.
Here’s a very 1960s data visualization of just how much code they wrote—this is Margaret Hamilton, director of software engineering for the project, standing next to a stack of paper containing the software: //
As enormous and successful as Burkey’s project has been, however, the code itself remained somewhat obscure to many of today’s software developers. That was until last Thursday (July 7), when former NASA intern Chris Garry uploaded the software in its entirety to GitHub, //
But as the always-sharp joke detectives in Reddit’s r/ProgrammerHumor section found, many of the comments in the AGC code go beyond boring explanations of the software itself. They’re full of light-hearted jokes and messages, and very 1960s references.
One of the source code files, for example, is called
BURN_BABY_BURN--MASTER_IGNITION_ROUTINE
TC BANKCALL # TEMPORARY, I HOPE HOPE HOPEall the tags from https://b.plas.ml
1st-amendment 2nd-amendment 4th-amendment 5th-amendment 9/11 a8 abortion acl adhd afghanistan africa a/i air-conditioning amateur-radio amazon america american android animals anti-americanism antifa anti-semitism antiv antivirus aoip apollo apple appliances archaeology architecture archive art astronomy audio automation avatar aviation backup bash batteries belleville bible biden bill-of-rights biology bookmarks books borg bush business calibre camping capitalism cellphone censorship chemistry children china christianity church cia clinton cloud coldwar communication communist composed computers congress conservatives constitution construction cooking copyleft copyright corruption cosmology counseling creation crime cron crypto culture culture-of-death cummins data database ddt dd-wrt defense democrats depression desantis development diagrams diamonds disinformation diy dns documentation dokuwiki domains dprk drm drm-tpm drugs dvd dysautonomia earth ebay ebola ebook economics education efficiency electricity electronics elements elwa email energy engineering english environment environmentalism epa ethernet ethics europe euthanasia evolution faa facebook family fbi fcc feminism finance firewall flightsim flowers fonts français france fraud freebsd free-speech fun games gardening genealogy generation generators geography geology gifts git global-warming google gop government gpl gps graphics green-energy grounding hdd-test healthcare help history hollywood homeschool hormones hosting houses hp html humor hunting hvac hymns hyper-v imap immigration india infosec infotech insects instruments interesting internet investing ip-addressing iran iraq irs islam israel itec j6 journalism jumpcloud justice kindle kodi language ldap leadership leftist leftists legal lego lgbt liberia liberty linguistics linux literature locks make malaria malware management maps markdown marriage mars math media medical meshcentral metatek metric microbit microsoft mikrotik military minecraft minidisc missions moon morality mothers motorola movies mp3 museum music mythtv names nasa nature navigation navy network news nextcloud ntp nuclear obama ocean omega opensource organizing ortlip osmc oxygen paint palemoon paper parents passwords patents patriotism pdf petroleum pets pews photography photo-mgmt physics piano picasa plesk podcast poetry police politics pollution pornography pots prayer pregnancy presentations press printers privacy programming progressive progressives prolife psychology purchasing python quotes rabbits rabies racism radiation radio railroad reagan recipes recording recycling reference regulations religion renewables republicans resume riots rockets r-pi russia russiagate safety samba satellites sbe science sci-fi scotus secularism security servers shipping ships shooting shortwave signal sjw slavery sleep snakes socialism social-media software solar space spacex spam spf spideroak sports ssh statistics steampowered streaming supplement surveillance sync tarsnap taxes tck tds technology telephones television terrorism tesla theology thorium thumbnail thunderbird time tls tools toyota trains transformers travel trump tsa twitter typography ukraine unions united.nations unix ups usa vaccinations vangelis vehicles veracrypt video virtualbox virus vitamin vivaldi vlc voting vpn w3w war water weather web whatsapp who wifi wikipedia windows wordpress wuflu ww2 xigmanas xkcd youtube zfs