488 private links
“The search for geologic hydrogen today is where the search for oil was back in the 19th century—we’re just starting to understand how this works,” said Frédéric-Victor Donzé, a geologist at Université Grenoble Alpes. Donzé is part of a team of geoscientists studying a site at Bulqizë in Albania where miners at one of the world’s largest chromite mines may have accidentally drilled into a hydrogen reservoir.
The question Donzé and his team want to tackle is whether hydrogen has a parallel geological system with huge subsurface reservoirs that could be extracted the way we extract oil. //
It turned out that over 200 tons of hydrogen was released from the Bulqizë mine each year. Donzé’s team went there to figure out where all this hydrogen was coming from.
The rocks did not contain enough hydrogen to reach that sort of flow rate. One possible explanation is the hydrogen being released as a product of an ongoing geological process called serpentinization. “But for this to happen, the temperature in the mine would need to reach 200–300 degrees Celsius, and even then, it would not produce 200 tons per year,” said Donzé. “So the most probable was the third option—that we have a reservoir,” he added. //
Bulqizë was entirely different. The gas pushed out of the Bulqizë mine is 84 percent hydrogen, one of the highest concentrations on record. Moreover, the hydrogen was not dissolved in water—it bubbled through Bulqizë’s underground pools, making them look like a jacuzzi. //
So Donzé’s team got busy looking for such places, and they found one. “There is a mine in Ural, central Russia, that has the exact same geological configuration as Bulqizë: harzburgite, dunite, and chromite,” said Donzé. “And guess what. They have a problem with explosions.”