443 private links
In reporting on a radiation study, a nearly universal practice of the 'experts' is to show us only the subjects' total doses. They do this despite the fact that usually what is measured is the dose rate profile, often in the form of daily doses. The total dose is computed by adding up these daily doses, and then tossing aside everything but the total. Analyzing radiation harm by only looking at total dose is like an electrical engineer attempt to analyze a complicated circuit by only looking at the annual energy input.
The human body is an extremely complex circuit. It has to be analyzed dynamically. The essential element of SNT [Signmoid No Threshold] is not the shape of the acute dose response curve, it is chopping the dose rate profile into repair periods, and analyzing each period separately. //
Where would we encounter 1 and 2 mSv/d dose rate profiles for decades? That's an easy one. Space travel. The astronauts in Low Earth Orbit get between 0.5 and 1.0 mSv/d, with occasional spikes during solar flares. High Earth Orbit or a trip to Mars will about double that. If LNT were valid, the shielding requirements would be prohibitively expensive.
NASA can't afford LNT. That's why it ignores all the EPA and NRC limits. The EPA says more than 1 mSv per year is unsafe. NASA says 1 mSv per day is routine. That's the difference between the top and bottom of Figure 1.
NASA is not the only entity that cannot afford LNT. Space travel is a luxury that humanity may or may not be able to afford. The benefits of manned space travel are at best speculative. The benefits of cheap nuclear electricity are undeniable and cornucopic. If we can correctly trash LNT to go into space, surely we can junk this counterfactual hypothesis to get cheap nuclear.