It's a plot device beloved by science fiction: our entire universe might be a simulation running on some advanced civilization's supercomputer. But new research from UBC Okanagan has mathematically proven this isn't just unlikely—it's impossible.
Dr. Mir Faizal, Adjunct Professor with UBC Okanagan's Irving K. Barber Faculty of Science, and his international colleagues, Drs. Lawrence M. Krauss, Arshid Shabir and Francesco Marino have shown that the fundamental nature of reality operates in a way that no computer could ever simulate.
Their findings, published in the Journal of Holography Applications in Physics, go beyond simply suggesting that we're not living in a simulated world like The Matrix. They prove something far more profound: the universe is built on a type of understanding that exists beyond the reach of any algorithm. //
"Drawing on mathematical theorems related to incompleteness and indefinability, we demonstrate that a fully consistent and complete description of reality cannot be achieved through computation alone," Dr. Faizal explains. "It requires non-algorithmic understanding, which by definition is beyond algorithmic computation and therefore cannot be simulated. Hence, this universe cannot be a simulation."
Co-author Dr. Lawrence M. Krauss says this research has profound implications. "The fundamental laws of physics cannot be contained within space and time, because they generate them. It has long been hoped, however, that a truly fundamental theory of everything could eventually describe all physical phenomena through computations grounded in these laws. Yet we have demonstrated that this is not possible. A complete and consistent description of reality requires something deeper—a form of understanding known as non-algorithmic understanding." //
More information: Mir Faizal et al, Consequences of Undecidability in Physics on the Theory of Everything, Journal of Holography Applications in Physics (2025). DOI: 10.22128/jhap.2025.1024.1118. On arXiv: DOI: 10.48550/arxiv.2507.22950 https://dx.doi.org/10.48550/arxiv.2507.22950