436 private links
Joe Swyers
2 hours ago edited
"the cost to Germans for being forced to rely on alternative energy sources is estimated to be $1 million per day."
Germans need to build over a hundred nuclear power plants to replace that 110,000,000,000 cubic meters per year of natural gas all four Nordstream pipelines could transport.
35,300 BTU per cubic meter
110,000,000,000 cubic meters per year
3,883,000,000,000,000 BTU per year
3,412 BTU per KWH
1,137,995,510,149 KWH
8,760 hours per year
129,908,163 KW
130 GW
1 GW average per nuclear power plant
130 Nuclear Power Plants needed by Germany.
France has 18 power plants with 56 operable reactors.
Germany will need ten times that number by the time they actually get them built and bring them online.
Better get cracking -- atoms, that is.
mopani Joe Swyers
3 minutes ago edited
If Germany had spent $580 billion on nuclear power instead of Energiewiend green energy they would have the cheapest, most reliable, lowest carbon footprint energy in the world.
With Nuclear Instead of Renewables, California and Germany Would Already Have 100 percent Clean Electricity
https://environmentalprogress.org/big-news/2018/9/11/california-and-germany-decarbonization-with-alternative-energy-investments //
California and Germany could have mostly or completely decarbonized their electricity sectors had their investments in renewables been diverted instead to new nuclear, a new Environmental Progress analysis finds.
In 2017, Germany generated 37 percent of its electricity from non-carbon sources.[1] In pursuing the Energiewende, Germany will have invested $580 billion in renewable energy and storage by 2025.
If Germany had invested in nuclear instead, it could have built 46 1.6 GW EPR reactors at the $12.5 billion per reactor cost of the U.K.’s Hinkley Point C. German companies assisted with the design of the EPR and the reactor was explicitly planned to meet the strictest European regulations.
In this scenario, EP assumes that a Germany pursuing nuclear power would maintain the same level of nuclear generation as it produced annually before implementing its nuclear phase-out in 2011, about 133 TWh per year.
With 46 EPRs operating at 90 percent capacity factor, Germany could first eliminate all coal, gas, and biomass electricity, then make up for today’s 150 terawatt-hours per year of wind and solar from its renewables investment, all while exporting 100 terawatt-hours of electricity to its neighbors (double 2017’s actual exports). Finally, with the remaining 133 terawatt-hours, Germany could decarbonize its entire light vehicle fleet including all 45 million of its passenger vehicles.[2]