436 private links
It's unlikely Boeing can fly all six of its Starliner missions before retirement of the ISS in 2030. //
Ten years ago next month, NASA announced that Boeing, one of the agency's most experienced contractors, won the lion's share of government money available to end the agency's sole reliance on Russia to ferry its astronauts to and from low-Earth orbit.
At the time, Boeing won $4.2 billion from NASA to complete the development of the Starliner spacecraft and fly a minimum of two, and potentially up to six, operational crew flights to rotate crews between Earth and the International Space Station (ISS). SpaceX won a $2.6 billion contract for essentially the same scope of work.
A decade later, the Starliner program finds itself at a crossroads after Boeing learned it will not complete the spacecraft's first Crew Flight Test with astronauts onboard. NASA formally decided Saturday that Butch Wilmore and Suni Williams, who launched on the Starliner capsule on June 5, will instead return to Earth in a SpaceX Crew Dragon spacecraft. Put simply, NASA isn't confident enough in Boeing's spacecraft after it suffered multiple thruster failures and helium leaks on the way to the ISS. //
On Saturday, senior NASA leaders decided it wasn't worth the risk. The two astronauts, who originally planned for an eight-day stay at the station, will now spend eight months on the orbiting research lab until they come back to Earth with SpaceX. //
So why did NASA and Boeing engineers reach different conclusions? "I think we’re looking at the data, and we view the data and the uncertainty that’s there differently than Boeing does," said Jim Free, NASA's associate administrator and the agency's most senior civil servant. "It’s not a matter of trust. It’s our technical expertise and our experience that we have to balance. We balance risk across everything, not just Starliner."
The people at the top of NASA's decision-making tree have either flown in space before or had front-row seats to the calamitous decision NASA made in 2003 to not seek more data on the condition of Space Shuttle Columbia's left wing after the impact of a block of foam from the shuttle's fuel tank during launch. //
Now, it seems that culture may truly have changed. With SpaceX's Dragon spacecraft available to give Wilmore and Williams a ride home, the decision was relatively straightforward. Ken Bowersox, head of NASA's space operations mission directorate, said the managers polled for their opinion all supported bringing the Starliner spacecraft back to Earth without anyone onboard.
However, NASA and Boeing need to answer for how the Starliner program got to this point. //
SpaceX, which NASA has tapped to rescue the Starliner crew, has now launched eight operational long-duration crew missions to the International Space Station to date, plus an initial piloted test flight of the Dragon spacecraft in 2020 and several more fully private human spaceflight missions. SpaceX has finished all of its work in its initial commercial crew contract with NASA and is now working off of an extended contract to carry the program through 2030, the planned retirement date for the ISS. //
Right now, the prime route is through SpaceX. NASA continues to fly one astronaut on each Russian Soyuz spacecraft in exchange for a seat for a Russian cosmonaut on each SpaceX crew mission. //
Assuming the investigation doesn't uncover any additional problems and NASA and Boeing return Starliner to flight with astronauts in 2026, there will not be enough time left in the space station's remaining life—as it stands today—for Starliner to fly all six of its contracted missions at a rate of one per year. It's difficult to imagine a scenario where NASA elects to fly astronauts to the space station exclusively on Starliner, given SpaceX's track record of success and the fact that NASA is already paying SpaceX for crew missions through the end of this decade.
Notably, NASA has only given Boeing the "Authority To Proceed" for three of the six potential operational Starliner missions. This milestone, known as ATP, is a decision point in contracting lingo where the customer—in this case, NASA—places a firm order for a deliverable. NASA has previously said it awards these task orders about two to three years prior to a mission's launch.
The commercial crew contracts are structured as Indefinite Delivery/Indefinite Quantity (IDIQ) agreements, where NASA can order individual missions from SpaceX and Boeing as needed. If SpaceX keeps performing well and the space station is actually decommissioned in 2030, it may turn out that NASA officials decide they just don't need more than three operational flights of Starliner. //
Lone Striker Smack-Fu Master, in training
7y
62
accdc said:
Thank you Stephen, and Eric, for your fantastic coverage of this issue.Here’s what I (as a layman with little technical expertise) don’t get:
How does SpaceX make it look so easy, and Boeing make it look so, well, ridiculous?
SpaceX designs, manufactures and integrates most components themselves. In Boeing's case, the thruster manufacturer is Aerojet. In order to make changes or redesign the components, there is a huge bureaucratic barrier in place. They have to jump through extraordinary hoops, not only engineers but also procurement, legal, and any number of departments. In SpaceX's case, it's a walk down the corridor to talk to engineers to discuss the problem and design the fix.
Boeing is also in the dark ages in terms of software development (my field.) SpaceX has a more Silicon Valley/Agile software design methodology where you make many, faster, smaller changes and test them extensively with small unit tests all the way through to hardware-in-the-middle testing to ensure things work as intended. Every tiny change gets rigorously tested to ensure there are no defects or regressions. Boeing's ancient software development process was one of the primary factors in their first Orbital Flight Test failure where they nearly lost the vehicle twice due to software bugs with the mission clock and reentry procedures.
Boeing relies partially on paperwork to validate their spacecraft (whether it's contracts with sub-contractors or studies in place of actual testing) and they've lost the engineers and the engineering culture from the early spaceflight era. //
HiWayne! Smack-Fu Master, in training
1y
50
Ten years they’ve been tinkering with Starliner. That’s crazy. The first crewed Mercury flight and Apollo 15 spanned ten years.
Yeah I know, I know. NASA had an insane budget back then, but damn. Boeing had the benefit of half a century of spaceflight experience and they’re struggling this much to get to LEO. //
Dachshund Wise, Aged Ars Veteran
4y
110
accdc said:
Thank you Stephen, and Eric, for your fantastic coverage of this issue.Here’s what I (as a layman with little technical expertise) don’t get:
How does SpaceX make it look so easy, and Boeing make it look so, well, ridiculous?
Having worked for or with these companies as an engineer, the most concise explanation I have is culture.
Boeings culture is not technically focused, nor mission focused. Boeings culture is Boeing focused with a particular emphasis on shareholders. The overwhelming majority of managers I’ve worked with at Boeing view engineers as a plug and play commodity and are woefully ignorant of the general subject matter they manage. Many I know at Boeing have an exceptionally difficult time taking responsibility for mistakes that Boeing makes. Whether it’s commercial planes or crew capsules, it’s somebody else’s fault and Boeing knew best. Hubris is rampant across Boeing. What’s fascinating there is that there isn’t a damn thing worth being proud of in recent years, but the cognitive dissonance remains strong.
SpaceX culture is mission focused. Their managers tend to understand what it is they are managing. Their workforce is rather young, however, they test things and are willing to publicly fail in a way that Boeing and others will not stomach. When SpaceX does fail, they tend to take full responsibility, learn from the issue and solve the problem.
SpaceX is more or less doing what NACA and subsequently NASA did in their infancy. It’s nothing new, but it’s a major difference as compared to what NASA and its ecosystem have evolved to since those early years. //
Malmesbury Wise, Aged Ars Veteran
3m
341
TLStetler said:
A big part of the problem is Boeing put too many thrusters in too small a space and operated them at a duty cycle which caused everything to overheat. Said overheating caused vapor lock in the propellant lines, and Teflon seals to soften and swell.On the other hand, if you've seen images of Dragon with the aeroshell off the thrusters are distributed spatially, not crowded together. Plumbing and control lines are not near the throats of said thrusters.
This is not even rocket science, any decent Hot Rodder knows not to place propellant/fuel lines etc. in a "hot box."
The problems are inherent in the development methods and company structures.
SpaceX insources - mostly because of cost, but also control. There are, deliberately, few barriers between the engineers working on various parts of the system.
The Boeing/Aerojet relationship is a key counter example - because of a arguments over money they started treating each other as the enemy.
Boeing is attempting to design to perfection, then test. If anything goes wrong at the test stage, they are actually in interactive hardware development. Without the hardware, or low cost basis to do the large number of physical tests required. SpaceX assumed they are in iterative development from the start.