488 private links
So, how did the team do it? They ditched traditional, space-rated hardware. They just couldn't take the mass penalty. For example, the RAD750 computer that operates most modern spacecraft—including the Perseverance rover—weighs more than 1 pound. They couldn't blow that much mass on the computer, even if it was designed specifically for spaceflight and was resistant to radiation.
Instead, Tzanetos said Ingenuity uses a 2015-era smartphone computer chip, a Qualcomm Snapdragon 801 processor. It has a mass of half an ounce.
The RAD750, introduced in 2001, is based on 1990s technology. The modern Qualcomm processor was designed for performance and has the benefit of 20 years of advancement in microprocessor technology. In addition to being orders of magnitudes cheaper—the RAD750 costs about a quarter of a million dollars, while the Qualcomm processor goes into inexpensive mobile phones—the newer chip has bucketloads of more performance.
"The processor on Ingenuity is 100 times more powerful than everything JPL has sent into deep space, combined," Tzanetos said. This means that if you add up all of the computing power that has flown on NASA's big missions beyond Earth orbit, from Voyager to Juno to Cassini to the James Webb Space Telescope, the tiny chip on Ingenuity packs more than 100 times the performance.
A similar philosophy went into other components, such as the rechargeable batteries on board. These are similar to the lithium batteries sold in power tools at hardware stores. Lithium hates temperature cycles, and on the surface of Mars, they would be put through a hellish cycle of temperatures from -130° Fahrenheit (-90° C) to 70° (20° C).
The miracle of Ingenuity is that all of these commercially bought, off-the-shelf components worked. Radiation didn't fry the Qualcomm computer. The brutal thermal cycles didn't destroy the battery's storage capacity. Likewise, the avionics, sensors, and cameras all survived despite not being procured with spaceflight-rated mandates.
"This is a massive victory for engineers," Tzanetos said.
Indeed it is. While NASA's most critical missions, where failure is not an option, will likely still use space-rated hardware, Ingenuity's success opens a new pathway for most science missions. They can be cheaper, lighter, and higher-performing in every way. This is almost unimaginably liberating for mission planners. //
The concept of flying Ingenuity came along at just the right time, in the early 2010s, as NASA was finalizing the payloads that would fly on the Perseverance rover to Mars in 2020. When NASA had to make the call on whether or not to fly the technology demonstration mission, the right mix of technologies was coming online: high energy density batteries, high-performance processors for mobile devices, lightweight cameras, and MEMS accelerometers to measure acceleration.
These devices were pushed and perfected as part of the mobile phone revolution. If there had been no iPhone, there would have been no Ingenuity. It was the perfect confluence, and it resulted in the miracle on Mars. //
It's a perilous exercise to judge history while being in the middle of history, of course. But I would rate Ingenuity among the three most innovative and important things that NASA has done during the 21st century. The other two are the James Webb Space Telescope and the Commercial Orbital Transportation Services, or COTS, program.