nuclear power
Cyril R says:
March 3, 2024 at 7:34 AM
A good writeup Michael. A couple of poimts though.
Actually water without precise chemistry control is very corrosive. All reactors require good chemistry control (there’s no such thing as pure helium). Davis Besse shows that borated water isn’t too nice either. And 155 bar borated water at 320C doesn’t qualify as “no hazard”.
Fluoride salts are stable, don’t generate hydrogen, and corrosion control rests on having the salt reducing toward the structural alloy rather than the passivation layer required with water. Fluoride salts also do not cause stress corrosion. So it ends up a simple matter of allowance thicknesses.
I like LWRs. Much better than coal plants. But they are basically glass cannons. The power goes out, the core melts down, generating explosive hydrogen in the process that detonates the containment and spreads radionuclides all over the country. Or someone thinks there is water in the core when there isn’t and the core melts down. A glass cannon like that just begs for military grade bureacracy not unlike a nuclear missile silo. Said bureaucracy is very expensive and results in all manner of bloat that inflated prices and build times. With advanced reactors focussing on inherent safety you at least have a case for a more rational regulatory approach.
A 3000 MWt LWR gets you 1000 MWe. An advanced reactor of 3000 MWt gets you 1500 MWe. That’s a quarter billion bucks a year more revenue.
By the way, 3 outages in 10 years is very good. Solar power stations have 365 outages a year.
During the Atomic Energy Commission’s (AEC) earliest years, the General Advisory Committee was sometimes viewed as a source of discouraging, delaying advice. Made up of selected members of the scientific establishment, the group habitually sought more studies and inserted costly delays aimed at making the perfect next step instead of taking steps that were good enough to support practical learning.
A March 8, 1952 New York Times article titled “Atomic Delay Laid to A.E.C. Advisers: Even Dr. Conant Should Yield to Men With Faith in Goal, Coast Chemists are Told,” provides a well-positioned person’s insights into the disappointingly slow process of developing power reactors. //
Pitzer gave the AEC a backhanded slap by calling it “reasonably efficient by general governmental standards,” and stated that its monopoly in atomic energy had delayed atomic reactor development.
He described how material production reactors, with their complex chemical processing systems, had been built in less than three years during wartime. During that time of rapid progress, he said, if there was a disagreement about which of two courses of action were best, both of them were followed.
In the succeeding years, following either route needed to be preceded by an “exhaustive series of preliminary studies” that added layers of cost to the project. Salaries, overhead and other cost components always accumulate during delays.
He noted how it took six years from the end of the war to build anything that could generate electricity, and even then it was a tiny reactor that produced just 100 kilowatts of power in December, 1951.
“The slowness,” Dr. Pitzer declared, “did not arise from a lack of designs for power reactors which reputable scientists and engineers were willing to build and test. It came rather from an unwillingness of the commission to proceed with any one of these designs until all of the advisers agreed that this was the best design.”
The speaker likened the present setup, with a multitude of committees advising the Atomic Energy Commission, to an automobile equipped with a separate brake lever for every passenger.
Stewart Peterson says:
January 18, 2021 at 12:14 PM
Conversely, from the perspective of the people conducting the approval process:
Nobody ever gets fired for doing nothing. However, people get fired for exceeding their authority all the time. Lawyers are arguing over where the line is, and the line never stops moving, and all previous decisions are reviewable and the people who made them are fireable, on the basis of a legal standard that didn’t exist at the time the decision was made.
So what do you do? If there is anything at all novel about what the applicant wants to do, you insist to the applicant that you have no authority to act on their application. This only changes once you have a directive, in writing, from someone above you. That person is unlikely to make such a directive unless they’re such a short-timer that they won’t get fired when the rules are reinterpreted. This is how political appointees get exasperated with minor and obvious decisions being kicked up to them instead of being resolved three levels below, where by any logic they should have been.
What it looks like to the applicant is that old political cartoon of the officials standing in a circle and pointing to the next guy. (You go to the Department of X. They say, “X doesn’t have authority to do that. Y does. Ask them.” You go to the Department of Y. You go there and they say, “Y doesn’t have authority to do that. X does. Ask them.”) Meanwhile, the organization as a whole drops the ball. No individual person in it has any incentive to act in the group’s interest.
I call this the “organizational infield fly rule.”
Much of the anti-nuclear activism in the courts is effective precisely by creating this type of doubt in the minds of the NRC staff – not by changing policy. All they have to do is create that question in the back of a junior manager’s mind: “will I be fired if I sign this?”
The path of least resistance? Appoint another committee to write another report.
A DIY Guide to Going Nuclear
Building a nuclear weapon has never been easier. NATO's Michael R�hle provides step-by-step instructions for going nuclear, from discretely collecting material to minimizing the fallout when caught. These simple steps have worked for the likes of Israel, Pakistan or North Korea, and your country could be next.
Tired of being bossed around? Want your neighbors to treat you with more respect? Want to play in the majors? If so, you have to have your own nukes.
Impossible? Not really. Granted, if your country is a signatory of the Nonproliferation Treaty (NPT), as most countries are, the constraints on your bomb building are considerable. Inspections by the International Atomic Energy Agency (IAEA) are difficult to circumvent. And the IAEA can no longer be fooled as easily as in the 1980s, when it failed to uncover Saddam Hussein's military nuclear program in Iraq despite regular inspections.
The IAEA's increased awareness means that you have to be imaginative. Here are some steps to consider.
Now, for the first time in 50 years, INL is preparing to build two new reactors and one reactor experiment at its desert site. One of these projects, the Microreactor Applications Research Validation and EvaLuation (MARVEL) microreactor will produce about 85 kilowatts of heat — which will be converted to approximately 20 kilowatts of electricity. A reactor this size would power around 10 homes. //
Microreactors like MARVEL are small nuclear reactors built in factories and transported wherever they are needed to provide electricity and heat. Initially, these reactors could power communities like remote Alaskan towns that now rely on expensive diesel shipments, along with industrial applications that require high temperature heat and electricity.
California: Climate Groups Push to Stop Re-Licensing of Diablo Canyon Nuclear Power Plant – RedState
Random US Citizen
7 hours ago edited
I hope the loons win. Because CA deserves it.
On the other hand, maybe Diablo can claim it identifies as a solar plant and ask CA politicians to pay for energy reassignment surgery?
Caedite eos. Novit enim Dominus qui sunt eius.
(1 GWye = roughly the electricity for one million people, living by western standards, for one year)
Let us suppose it is our mission to produce electricity for a run-of-the-mill city with about 1 million inhabitants living by Western standards. This city will need about thousand megawatts of electricity, year round, in short 1GWye. In the visual, I compare four ways to accomplish this, along with the input and output of each of the options.
What do you call it when the same people who screech about carbon emissions and climate change oppose clean, efficient, carbon-free nuclear energy? Is this hypocrisy? Ignorance? Both?
Representative Jeff Duncan (R-SC) has introduced H.R.6544 - Atomic Energy Advancement Act, which is co-sponsored by a Democrat, Diana DeGette (D-CO), who, while not the farthest left in the Democratic Party, is certainly no Zell Miller-like Blue Dog. This is a bipartisan bill, and one intended to facilitate the development of nuclear power plants in the United States. The bill lists as its purpose:
To advance the benefits of nuclear energy by enabling efficient, timely, and predictable licensing, regulation, and deployment of nuclear energy technologies, and for other purposes.
Giving society cheap, abundant energy ... would be the equivalent of giving an idiot child a machine gun. -- Paul Ehrlich
It'd be little short of disastrous for us to discover a source of clean, cheap, abundant energy because of what we would do with it. -- Amory Lovins, 1977
Why is nuclear power Green today when it wasn’t yesterday? Because it was never about the science.
Nuclear power has been the NetZeroiest energy on Earth since the sun formed from collapsing interstellar gas. Nuclear plants don’t produce any CO2 at all, but that wasn’t good enough because it was never about CO2 either. It was always about power and money and profits for friends.
And the best friend of a bureaucrat is a captive-dependent-industry, one that survives on handouts. Those in need of Big Government largess always lobby for Big Government, donate to Big Government causes and cheer on everything Big Government wants them to cheer on, even if it’s a naked man in high heels.
Yesterday gas was a fossil fuel, but today it’s a sustainable one:
In a radical move, the French government has quietly dropped their renewables targets from their draft energy bill, risking being seen as unfashionable losers in billionaire ski clubs. The nation that, forty years ago, built 56 nuclear reactors in 15 years has decided they just need to build another 6 to 14 new nuclear plants to reach “Net Zero” by 2050. This puts them in danger of being one of the only nations on Earth that might reach their target.
This, of course, is terrible for the renewables industry as it risks exposing the wanton frivolity and utterly superfluous nature of the wind and solar subsidy farms. If France can do this without the bird chopping, the slave labor and the lithium bombs, so can nearly everywhere else.
It’s a big change from 2014 when France aimed to reduce nuclear power to just 50% by 2025.
A new paper in PLOS ONE, “Land-use intensity of electricity production and tomorrow’s energy landscape 2”, examines the land use requirements of various alternative energy sources. The paper is open access with the full text available at the link or as a PDF file 5. The results are summarised in the following graphic.
The global energy system has a relatively small land footprint at present, comprising just 0.4% of ice-free land. This pales in comparison to agricultural land use– 30–38% of ice-free land–yet future low-carbon energy systems that shift to more extensive technologies could dramatically alter landscapes around the globe. The challenge is more acute given the projected doubling of global energy consumption by 2050 and widespread electrification of transportation and industry. Yet unlike greenhouse gas emissions, land use intensity of energy has been rarely studied in a rigorous way. Here we calculate land-use intensity of energy (LUIE) for real-world sites across all major sources of electricity, integrating data from published literature, databases, and original data collection. We find a range of LUIE that span four orders of magnitude, from nuclear with 7.1 ha/TWh/y to dedicated biomass at 58,000 ha/TWh/y. By applying these LUIE results to the future electricity portfolios of ten energy scenarios, we conclude that land use could become a significant constraint on deep decarbonization of the power system, yet low-carbon, land-efficient options are available.
Today, nuclear power is not usually considered among the “sustainable” alternatives to fossil fuels and, since it relies upon uranium as a fuel, of which a finite supply exists on Earth, is classified as “non-renewable” and hence not viable as a long-term energy source. But what do you mean “long-term”, anyway? Eventually, the Sun will burn out, after all, so even solar isn’t forever. Will ten thousand years or so do for now, until we can think of something better?
Energy “experts” scoff at the long-term prospects for nuclear fission power, observing that known worldwide reserves of uranium, used in present-day reactor designs, would suffice for only on the order of a century if nuclear power were to replace all primary power generation sources presently in use. But is this correct? In fact, this conclusion stems not from science and technology, but stupidity and timidity, and nuclear fission is a “bird in the hand” solution to the world’s energy problems awaiting only the courage and will to deploy it.
That is the conclusion by the authors of a paper with the same title as this post, “Nuclear Fission Fuel is Inexhaustible 45” [PDF, 8 pages], presented at the IEEE EIC Climate Change Conference in Ottawa, Canada in May 2006. Here is the abstract:
Nuclear fission energy is as inexhaustible as those energies usually termed “renewable”, such as hydro, wind, solar, and biomass. But, unlike the sum of these energies, nuclear fission energy has sufficient capacity to replace fossil fuels as they become scarce. Replacement of the current thermal variety of nuclear fission reactors with nuclear fission fast reactors, which are 100 times more fuel efficient, can dramatically extend nuclear fuel reserves. The contribution of uranium price to the cost of electricity generated by fast reactors, even if its price were the same as that of gold at US$14,000/kg, would be US$0.003/kWh of electricity generated. At that price, economically viable uranium reserves would be, for all practical purposes, inexhaustible. Uranium could power the world as far into the future as we are today from the dawn of civilization—more than 10,000 years ago. Fast reactors have distinct advantages in siting of plants, product transport and management of waste.
How the country is going K-nuclear //
In 1972 South Korea began construction of its first commercial nuclear power plant, at a time when the country’s per-capita income was slightly lower than that of North Korea. Since South Korea had a relatively small industrial base at the time, undertaking a large infrastructure project was risky.
Propitiously, the venture paid off, and South Korea’s daring has been an overture to success: the country’s industrial growth is largely thanks to nuclear power. With 25 nuclear reactors, South Korea is currently the world’s sixth-largest producer of nuclear energy. In 2022, South Korea ranked third worldwide in terms of the number of nuclear reactors under construction, following China and India.
The country has put a significant amount of effort into developing its nuclear industry, which is demonstrated by the three South Korean power plants in the top five on the list of leading nuclear power plants ranked by capacity in 2023.
After President Yoon Suk Yeol took office in 2022, the administration embraced nuclear energy fully. Speaking of the previous government’s stance against nuclear energy, Yoon pulled no punches, stating: “Had we not been foolish over the past five years and further reinforced the nuclear power ecosystem, we probably would not have any competitors now.” //
Standardisation is key to South Korea’s success with nuclear energy. This means building the same design, ideally using the same engineers who have become familiar with the design, repeatedly, and licensing multiple new reactors at the same time. A paper on standarisation in South Korea summarises that: “Where a number of nuclear power plants are constructed in series within the framework of a long-term national power development plan, nuclear power plant standardisation can definitely facilitate self-reliance in the technology.”
As President Yoon puts it, "The competitiveness of our nuclear plant businesses lies in our ability to construct on time and on budget, which no other company in the world can imitate."
ThorCon is a packaged nuclear power plant concept from Martingale, Inc. that is designed to wring capital costs out of nuclear plant construction. The company visionaries have recognized that the biggest hurdles to building new actinide-fueled reactors are the initial capital investment along with the excessive required construction lead time.
Instead of complaining that “the market” does not reward carefully crafted works of industrial art designed to last for sixty to one hundred years with lucrative paybacks delayed for three or four decades after final investment decisions, the ThorCon design team started with the notion that product designers must create offerings that satisfy market demands.
Today’s energy market rewards financial flexibility, predictable construction schedules, reasonably low investment, affordable operating costs, low or no emissions, and readily implemented upgrade paths. If the offered solution is one that uses actinide fission, customers will also want to clearly understand provisions for handling process leftovers, liabilities, accident prevention, consequence mitigation and regulatory barriers.
Zion Lights @ziontree
One of the reasons I like nuclear energy is its small land footprint.
This video shows the amount of land required by the Olkiluoto 3 nuclear power plant in Finland compared with wind power.
Data visualisation by @Klimavenner
mopani
4 days ago edited
Hydrogen molecules are the smallest in the universe, making it very difficult to make effective seals. First strike.
Hydrogen has an extremely wide flammability range, 4% to 76% of air. Strike two.
While the molar energy density (per molecule) and energy density by weight of hydrogen are exceptional, its volumetric energy density is extremely low, even in liquid form. Compare the size of hydrogen tank to the size of the oxygen tank in the space shuttle. That's one of the primary reasons the SpaceX Super Heavy and Starship rockets use methane instead of hydrogen, because the volumetric energy density is orders of magnitude greater. Strike three.
The Hydrogen energy economy is just another government boondoggle like Solyndra. Attractive on the surface, and sounds intelligent, but ultimately impractical and wasteful.
It's funny actually, if not ironic, that the volumetric energy density of hydrogen is so poor, but as soon as you combine it with some other element, say carbon, its volumetric energy density and practical usability go off the charts! I'm sure some commercial enterprise will discover this and exploit it real soon, and I'm willing to wager that it won't take any government money to build an absolutely booming economy out of it either!!
Just skip the hydrogen! If you're not going to exploit the most efficient energy store in the universe by using a hydrogen compound (hydrocarbons), why do you want to use only half of it, the hydrogen alone?
One should not too quickly dismiss what several generations of the most brilliant minds have already developed and streamlined into an efficient system with sophomoric thinking that somehow believes is an overlooked insight into the fundamentals of the universe.
What is being overlooked is the fantastic energy available from fissioning atoms. The most powerful chemical reaction generates 9 electron volts of energy per molecule. The energy from the fission of one atom (of which there are at minimum three in any chemical reaction) is almost 2 million electron volts. We know how to safely harness an energy source that is six orders of magnitude more powerful than any other, and yet it is rejected. You have to ask why.
"What about the nuclear waste?" It's not waste, it is used fuel, and it can be reused, except that Jimmy Carter, who calls himself a "nuclear engineer" although he never completed the Navy nuclear school, decreed that reusing spent fuel was too dangerous.
Consider too, that nuclear power plants are the only source of energy that completely contain all of their waste/byproducts. The used fuel from all of the nuclear power plants in 70 years of operation in the United States would not fill one single Walmart store.
Annual fuel use for one reactor is 35 tons of uranium fuel -- one semi truck load, although it would only fill a couple of milk crates. The same size coal power plant requires 100 coal cars per day.
Much Hoon, Very Flerp -> mopani
3 days ago
Mo, if you don’t mind my asking, what is it you do for a living? That’s probably the best short form explanation of the issue I’ve ever heard or read. Thank you.
mopani -> Much Hoon, Very Flerp
a day ago edited
Thank you for the compliment. I'm a missionary radio engineer that manages diesel generators and some solar plants because of poor energy supply in Africa.
I've been reading about and studying "renewables" and energy most of my life; I've come to the conclusion that most of the world's leaders are at the energy sophomore phase I was at in high school. Will they ever grow up? Doubtful, to be honest.
If you want a really well-rounded perspective on the whole energy and environment picture and not just the hot takes, read Michael Shellenberger's Apocalypse Never. Fantastic book, and hard to put down! His website is http://environmentalprogres... and is the only thing I've ever seen come out of Berserkely that I could whole-heartedly support. =)
[Edit: I should also give a shout-out to David MacKay's Sustainable Energy -- Without the Hot Air, available on Amazon and online at http://www.withouthotair.com. There is not a better "whole picture" view of energy use out there. ]
One of the best nuclear reactor designs was the Molten Salt Reactor, built and tested at Oak Ridge National Labs from 1965-1969. Thorcon Power wants to mass produce this proven design on a ship-yard assembly line. If CO2 emissions are an existential threat, then we need to be building one hundred 1GW nuclear power plants per year.
A molten salt reactor doesn't need to exchange fuel when the fission product isotopes start to poison the reaction, because the worst poisons ("neutron eaters") are noble gases, and if your fuel is liquid, they can easily be removed instead of being trapped in a solid fuel pellet. So instead of 35 tons of fuel per year, it would only need 1 ton of nuclear fuel per year, and it would extract at least 30% of the potential energy instead of 1%, like the typical Pressurized Water Reactors (Boiling Water Reactors are similar efficiency).
Besides Thorcon's website, visit http://www.daretothink.org to learn more about Molten Salt Reactors; I recommend starting with the "Numbers" page. //
mopani > C. S. P. Schofield
2 days ago
"Hydrogen has its own problems"
Yes, yes it does. It may have the highest energy per molecule, but it is also the smallest molecule, making it very difficult to seal. It also has the worst volumetric energy because of its low density. It's funny how combining it with a couple of carbon atoms fixes that! I wrote a long comment about this the other day on Ward Clark's article about hydrogen.
What would really be interesting, and I think is being ignored for obvious reasons, is hydrocarbon fuel cells, combining the simplicity of the electric drive train with the efficient energy storage of hydrocarbons. It also makes it very easy to make it a hybrid, and if we're wanting to improve efficiency and lower emissions, every vehicle should be a hybrid to recover braking and downhill energy. But hybrids with internal combustion engines add significant complexity.
Fossil fuels are the dirtiest and most dangerous energy sources, while nuclear and modern renewable energy sources are vastly safer and cleaner.